Dantzig Selector with an Approximately Optimal Denoising Matrix and its Application in Sparse Reinforcement Learning

نویسندگان

  • Bo Liu
  • Luwan Zhang
  • Ji Liu
چکیده

Dantzig Selector (DS) is widely used in compressed sensing and sparse learning for feature selection and sparse signal recovery. Since the DS formulation is essentially a linear programming optimization, many existing linear programming solvers can be simply applied for scaling up. The DS formulation can be explained as a basis pursuit denoising problem, wherein the data matrix (or measurement matrix) is employed as the denoising matrix to eliminate the observation noise. However, we notice that the data matrix may not be the optimal denoising matrix, as shown by a simple counter-example. This motivates us to pursue a better denoising matrix for defining a general DS formulation. We first define the optimal denoising matrix through a minimax optimization, which turns out to be an NPhard problem. To make the problem computationally tractable, we propose a novel algorithm, termed as “Optimal” Denoising Dantzig Selector (ODDS), to approximately estimate the optimal denoising matrix. Empirical experiments validate the proposed method. Finally, a novel sparse reinforcement learning algorithm is formulated by extending the proposed ODDS algorithm to temporal difference learning, and empirical experimental results demonstrate to outperform the conventional “vanilla” DS-TD algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Near-Oracle Performance of Basis Pursuit under Random Noise

We consider the problem of estimating a deterministic sparse vector x0 from underdetermined noisy measurements, in which the noise is a Gaussian random vector. Two techniques which are commonly used in this setting are the Dantzig selector and basis pursuit denoising (BPDN). It has previously been shown that, with high probability, the Dantzig selector comes close to the performance of the orac...

متن کامل

The Dantzig Selector : Statistical Estimation

given just a single parameter t. Two active-set methods were described in [11], with some concern about efficiency if p were large, where X is n× p . Later when basis pursuit de-noising (BPDN) was introduced [2], the intention was to deal with p very large and to allow X to be a sparse matrix or a fast operator. A primal–dual interior method was used to solve the associated quadratic program, b...

متن کامل

DISCUSSION : THE DANTZIG SELECTOR : STATISTICAL ESTIMATION WHEN p IS MUCH LARGER THAN

given just a single parameter t . Two active-set methods were described in [11], with some concern about efficiency if p were large, where X is n× p . Later when basis pursuit de-noising (BPDN) was introduced [2], the intention was to deal with p very large and to allow X to be a sparse matrix or a fast operator. A primal–dual interior method was used to solve the associated quadratic program, ...

متن کامل

A Novel Image Denoising Method Based on Incoherent Dictionary Learning and Domain Adaptation Technique

In this paper, a new method for image denoising based on incoherent dictionary learning and domain transfer technique is proposed. The idea of using sparse representation concept is one of the most interesting areas for researchers. The goal of sparse coding is to approximately model the input data as a weighted linear combination of a small number of basis vectors. Two characteristics should b...

متن کامل

The Constrained Dantzig Selector with Enhanced Consistency

The Dantzig selector has received popularity for many applications such as compressed sensing and sparse modeling, thanks to its computational efficiency as a linear programming problem and its nice sampling properties. Existing results show that it can recover sparse signals mimicking the accuracy of the ideal procedure, up to a logarithmic factor of the dimensionality. Such a factor has been ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016